Geometric ergodicity of a bead–spring pair with stochastic Stokes forcing

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric ergodicity of a bead-spring pair with stochastic Stokes forcing

We consider a simple model for the fluctuating hydrodynamics of a flexible polymer in dilute solution, demonstrating geometric ergodicity for a pair of particles that interact with each other through a nonlinear spring potential while being advected by a stochastic Stokes fluid velocity field. This is a generalization of previous models which have used linear spring forces as well as white-in-t...

متن کامل

Ergodicity of Truncated Stochastic Navier Stokes with Deterministic Forcing and Dispersion

Turbulence in idealized geophysical flows is a very rich and important topic. The anisotropic effects of explicit deterministic forcing, dispersive effects from rotation due to the β-plane and F-plane, and topography together with random forcing all combine to produce a remarkable number of realistic phenomena. These effects have been studied through careful numerical experiments in the truncat...

متن کامل

Ergodicity of the 2D Navier-Stokes Equations with Degenerate Stochastic Forcing

The stochastic 2D Navier-Stokes equations on the torus driven by degenerate noise are studied. We characterize the smallest closed invariant subspace for this model and show that the dynamics restricted to that subspace is ergodic. In particular, our results yield a purely geometric characterization of a class of noises for which the equation is ergodic in L0(T 2). Unlike previous works, this c...

متن کامل

Geometric ergodicity of asymmetric volatility models with stochastic parameters

In this paper, we consider a general family of asymmetric volatility models with stationary and ergodic coefficients. This family can nest several non-linear asymmetric GARCH models with stochastic parameters into its ambit. It also generalizes Markovswitching GARCH and GJR models. The geometric ergodicity of the proposed process is established. Sufficient conditions for stationarity and existe...

متن کامل

Ergodicity of 2d Navier-stokes Equations with Random Forcing and Large Viscosity

The stochastically forced, two-dimensional, incompressable Navier-Stokes equations are shown to possess an unique invariant measure if the viscosity is taken large enough. This result follows from a stronger result showing that at high viscosity there is a unique stationary solution which attracts solutions started from arbitrary initial conditions. That is to say, the system has a trivial rand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 2012

ISSN: 0304-4149

DOI: 10.1016/j.spa.2012.07.003